Parallelized Physics Simulations in Julia

Liam Doherty

Liam Doherty
Parallelized Physics Simulations in Julia

Outline

@ The Julia Ecosystem
© The Problem
© Solving and Performance Analysis

@ Future Directions for Research

Liam Doherty

Parallelized Physi

The Julia Ecosystem
®0

The Julia Ecosystem

o DifferentialEquations.jl, MLJ.jl, Flux.jl, Optim.jl, SciML
o Centered around pure Julia

@ Focused on C-like performance with best syntax fused from
Python, MATLAB, R

Languages

Languages

Julia 100.0%

HTML 2.8%
Other 2.7%

Figure: Flux.jl Languages

Figure: Tensorflow Languages

Liam Doherty
Parallelized Physics Simulations in Julia

The Julia Ecosystem
oe

The Julia Ecosystem

e Fantastic support for differential equation solving (ODEs,
PDEs, SDEs, etc.)

e Extremely flexible options for parallelism/performance
engineering including multithreading, distributed computing,
GPU acceleration via CUDA, and more!

@ Also domain-specific packages are plentiful: BioJulia,
Julialmages, JuliaDynamics, and QuantEcon just to name a
few.

Liam Doherty
Parallelized Physics Simulations in Julia

The Problem
[ele}

The Problem

Figure: Magnetic Field Lines Figure: Aurora Produced

Liam Doherty

Parallelized Physi

The Problem
oeo

The Problem

System of ODEs (after normalization and dropping small terms):

Here, A, p are the coordinate and momentum, and p, ¢ are the
angular momentum and gyrophase of a charged particle (i.e., an
electron) traveling in Earth’s magnetic field.

Liam Doherty
Parallelized Physics Simulations in Julia

The Problem
ooe

The Problem

e Want to integrate 20,000 trajectories (16 initial angles; 5
initial energy levels each affecting p, i, A\) and 250 (random)
initial phases ¢ for each angle-energy pair.

@ These trajectories are independent, so they can be computed
in parallel.

@ We look to integrate from t = 0 to t = 3000, stopping the
trajectory if at any point p < pimin = 0.001.

e Finally, we want statistics (how many/when did trajectories
terminate early, compute their ending energy).

Liam Doherty
Parallelized Physics Simulations in Julia

Solving and Performance Analysis
[eJelele]

Solving and Performance Analysis

There are a few things that need to be done for implementation:

@ Code the system in a flexible way (module, similar to a class
in OOP)

Code a solver
Stay careful to make serial code as efficient as possible

Parallelize solving across large sets of initial conditions

Test the results!

Liam Doherty
Parallelized Physics Simulations in Julia

Solving and Performance Analysis
(o] lele]e]

Solving and Performance Analysis

@ A lot of the heavy lifting is done for us (at least in terms of
the solver) through DifferentialEquations.jl. We use a basic
4th order Runge-Kutta method for our system.

o Keeping type stability (e.g., making sure variables don't
change from integers to floats) makes serial code much faster.

@ Declaring physical constants in a non-mutable structure with
predefined types helps with this!

Liam Doherty
Parallelized Physics Simulations in Julia

Solving and Performance Analysis
[e]e] lele]

But how do we parallelize? Again, DifferentialEquations.jl comes
to the rescue!
@ Ensemble problems allow us to "remake” our ODE system
each evaluation of the system, so we can set our initial
conditions to the next set in our list for each trajectory.

@ This framework has options for serial, multithreaded,
distributed, and GPU-accelerated evaluation.

@ For our comparison, we use serial as a baseline, and then
distributed for parallelism. For larger simulations, we can use
GPU-based acceleration.

Liam Doherty

Parallelized Physi

Solving and Performance Analysis
[e]ele] o]

Solving and Performance Analysis

Now, it is time to see how the distributed code does against the
serial code...

Liam Doherty
Parallelized Physics Simulations in Julia

Solving and Performance Analysis
[e]ele] o]

Solving and Performance Analysis

Now, it is time to see how the distributed code does against the
serial code...

Be_ginning Parallel...
262.239733 seconds (14.21 M allocations: 821.738 MiB, 0.07% gc time, 0.87% compilation time)

Beginning Serial...
1690.302925 seconds (1.58 M allocations: 100.209 MiB, 0.00% gc time, ©.12% compilation time)

Figure: 6.45 times speed-up!

Here we ran 100 identical trajectories, with the distributed version
actively making use of 10 Julia processes.

Liam Doherty

Parallelized Physics Simulati

Solving and Performance Analysis
[eele]e]]

Solving and Performance Analysis

@ At this scale, it doesn't quite make sense to use GPUs yet.

@ We will be considering how modulation to the input of the
system affects the output statistics; stay tuned for results
there!

@ Going forward, we will be using Drexel's Picotte cluster for
our computations.

Liam Doherty
Parallelized Physics Simulations in Julia

Future Directions for Research
®0

Future Directions for Research

Data-Driven Physics
Physics-Informed Neural Networks (PINNs)
Large-scale multiphysics modeling

Parallel computing methods for all of the above

Liam Doherty
Parallelized Physics Simulations in Julia

Future Directions for Research
oe

Thank you!

Liam Doherty
Parallelized Physics Simulations in Julia

	The Julia Ecosystem
	The Problem
	Solving and Performance Analysis
	Future Directions for Research

