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Abstract— Phase of flight (POF) prediction estimates the future 

state of aircraft along planned trajectories, allowing the prediction 

of potential conflicts as well as optimization of air space, controlled 

by the Federal Aviation Administration. In this paper, we present 

a study conducted to develop three different POF forecasting 

machine learning models and a statistical regression model using 

four-dimensional GPS and RADAR Track data from 57 flights 

provided by an En Route Computer System. The investigated 

machine learning models include Long Short-Term Memory 

Recurrent Neural Network (LSTM-RNN), Support Vector 

Machine (SVM), and Neural Ordinary Differential Equations 

(NODE). These were developed to forecast the horizontal and 

vertical POF of the current aircraft for the next time step. The 

results in this study indicate that LSTM-RNN models are more 

suitable for POF prediction than SVM and statistical regression 

models, with NODE being a promising model for future trajectory 

prediction research.  

Keywords-Trajectory Prediction; Machine Learning; Long 

Short-Term Memory; Support Vector Machine; Neural Ordinary 

Differential Equations; Regression; Phase of Flight 

I.  INTRODUCTION 

The Federal Aviation Administration (FAA) and other related 

global organizations routinely use trajectory prediction to 

estimate the position of an aircraft when it deviates from its 

planned route. Lateral deviation is commonplace in aviation for 

a multitude of reasons; different conflicts arise between takeoff 

and touchdown that aircraft must maneuver around for safe and 

efficient travel. Inclement weather, turbulence, pilot behavior, 

and the presence of other aircraft nearby are some of the 

primary reasons that force the subject aircraft to alter the course 

of travel. The circumstances vary for each flight, so different 

avoidance tactics are warranted. According to Dupuy and 

Porretta [3], the current trajectory prediction methodology is 

broken down into four parts: (i) preparation, (ii) trajectory 

prediction, (iii) trajectory export, and (iv) trajectory update. 

Preparation involves generating a flight script that defines 

instructions for each segment of the trajectory. Trajectory 

Prediction uses computational methods and algorithms to turn 

the flight script into a trajectory using models such as aircraft 

performance and meteorological data.  

The particular state of the aircraft is critical to the trajectory 

prediction process, such as position, speed, and phase of flight 

(POF).  The goal of this study was to develop a model that 

utilizes artificial intelligence (AI) to predict vertical and 

horizontal POF, which is a critical part of trajectory prediction. 

This paper presents the development of three machine learning 

models for predicting aircraft vertical and horizontal POF as 

well as a statistical regression algorithm for developing ground 

truth datasets. These machine learning models are Support 

Vector Machine (SVM), Long Short-Term Memory Recurrent 

Neural Network (LSTM-RNN), and Neural Ordinary 

Differential Equations (NODE). The statistical algorithm that 

was used as a foundation for this paper and the data used for 

training and testing was provided by the FAA and is explained 

in detail in a research paper published by Paglione and Oaks in 

2006 [17]. 

II. RELATED WORK 

A. Existing Trajectory Prediction Practices 

Every aircraft is equipped with radio transponders that RADAR 

systems can use to identify the flight. Most aircraft are equipped 

with a Global Positioning System (GPS), which provides the 

position of the aircraft during flight. RADAR systems and GPS 

provide the ground truth data about the position of the aircraft, 

which can be utilized to (1) develop trajectory prediction 

models as well as (2) evaluate the accuracy of these models 

during post-analysis. However, the standard data transmission 

interval of RADAR systems (typically 12 seconds) and the 

noise in the measurements (i.e., sensor data, specifically 

RADAR sensor) are primary limitations that impact estimation 

of actual flight path [2]. The current practice is to obtain an 

accurate tracking function to ensure efficient performance in air 

traffic control despite this shortcoming. Trajectory estimation 

is performed to create a better representation of the aircraft’s 
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actual flight path, which can be achieved in two ways. The first 

method involves developing a model that utilizes an aircraft's 

position to estimate the trajectory of its remaining path. The 

second method includes determining the lateral deviation from 

the actual flight path and utilizing this information to estimate 

the remaining trajectory.  

In addition to RADAR track and GPS positioning data, 

researchers have utilized various algorithms with additional 

parameters to analyze flight data. Some methods include 

geometric properties, for example, algorithms that consider the 

angle between the heading of the plane after deviation occurs 

compared to its original track [1]. Along with coordinate data 

for latitude, longitude, and altitude, trigonometric calculations 

can determine maneuvers for the plane to return to the optimal 

route of travel. Groundspeed can also be utilized for kinematic 

modeling or other physics-based models. Once thresholds for 

permissible values are established, algorithms can determine if 

a flight is following its intended path, and if not, it can 

determine how much difference in position lies between the 

actual and theoretical position [17]. This statistical approach is 

one of the methods used in this study. The outcomes of the 

statistical approach were compared with machine learning 

models. 

B. Limitations 

A fundamental limitation for current trajectory prediction 

methods is the accuracy of the GPS and RADAR track 

measurements. Accuracy is evaluated by running simulations 

to examine phases where the flight follows a straight trajectory 

and where it performs a maneuver. Paglione and Ryan, 2005, 

analyzed several flights for measurement accuracy and, for one 

flight sample, reported that "The radar track swung wide of the 

GPS positions, being offset by 0.33 nm, and lagged the GPS 

positions by several seconds" [2]. This study compares the 

forecasting performance of each model, using both GPS and 

RADAR track data. Other studies have identified potential 

room for error in the data, which are used to inform the 

trajectory prediction system. Dupuy and Porretta [3] argue that 

uncertainty arises from aircraft intent, current aircraft position, 

aircraft performance library data, and meteorological library 

data. This uncertainty is further compounded by the use of 

different mathematical models when predicting the trajectory, 

which may model the aircraft using either center of gravity and 

angular velocity or forces and moments. Uzun and Koyuncu [4] 

confirmed this observation by demonstrating how takeoff mass 

affects climb speed in a way that is not accounted for in current 

trajectory prediction systems. They also establish the 

framework for a system that would not only predict the 

trajectory of the aircraft and its overall flightpath but also 

actively adapt to changes in route to reduce the error, as 

mentioned above [4]. The desire to modify these existing 

systems with real-time aircraft positional data is the motivation 

for developing improved trajectory prediction, which considers 

these and other proposed parameters. 

C. Phase of Flight Prediction 

The National Transportation Safety Board (NTSB) defines the 

phases of flight as distinct, standardized characterizations of the 

different possible “period[s] within a flight” [5]. The NTSB 

establishes a taxonomy for the individual phases to allow for 

better reporting of incidents and clarity across multiple aviation 

industries. An increasing amount of research, spurred in part by 

the FAA’s NextGen initiative [6], is drawing from this 

knowledge of the phases of flight to create an increasingly 

robust trajectory prediction system to improve air travel safety 

and decrease the burden on air traffic controllers. Knowing the 

active phase of an aircraft in real-time, as well as predicting 

when an aircraft is likely to transition between phases, is vital 

to modernizing trajectory prediction systems. The research in 

this paper is concerned with the determination of an aircraft’s 

horizontal and vertical POF. 

III. CURRENT AND PROPOSED TRAJECTORY & PHASE OF FLIGHT 

PREDICTION SYSTEMS 

The current research demonstrates that there are multiple 

approaches to change or improve trajectory prediction. Table 1 

is a matrix table that shows the parameters and methods of each 

study. This detailed review of the current and proposed 

prediction systems helped the research team to determine the 

direction of the research method outlined in this paper. 

IV.  METHOD 

The research approach for this study involved the re-creation of 

a regression algorithm and the development of SVM, LSTM-

RNN, and NODE machine learning models. The first step was 

to prepare the ‘ground truth’ dataset for training the machine 

learning models. ‘Ground truth’ refers to the dataset with the 

aircraft’s true POF for each recorded timestep. The data, 

provided by the FAA, includes 57 flights recorded between 

January and February 2005 from the Salt Lake City Air Route 

Traffic Control Center. This is the same dataset used in [17]. 

The purpose of re-creating the regression algorithm was to 

verify the ground truth dataset and to create a baseline for 

comparison with the machine learning models. The results that 

were obtained are useful for further research and development 

for multi-step time series forecasting models with additional 

layers and dataset parameters. 
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TABLE I.  OUTLINE OF CURRENT AND PROPOSED TRAJECTORY & PHASE OF FLIGHT PREDICTION SYSTEMS 

Parameter 4D 
Rate of climb or 

descent 
TAS Mass Route 

Intent 

Language 

Machine 

Learning 
Wind Genetic 

3D Position 
[7] [8] [9] [10] 
[11] [12] 

[13] [3] [14] 
[15] [3] 
[16] 

 
[1] [3] 
[17] 

[18] [19] [20] 
[21] 

[22] [23] [24] 
[25] 

[16] 
[26] 
[27] 

Time 
[7] [8] [9] [10] 

[11] [12] 
[13] [3] [14]   

[1] [3] 

[17] 

[18] [19] [20] 

[21] 
  

[26] 

[27] 

Airspeed  [14] [3] 
[15] [3] 
[16] 

[4] 
[1] [3] 
[17] 

[18] [19] [20] 
[21] 

[22] [23] [24] 
[25] 

[16]  

Altitude  [13] [3] [14] [3] 
[28] [29] 

[4] 

[1] [3] 

[17] 

[18] [19] [20] 

[21] 

[22] [23] [24] 

[25] 
[16]  

Mass    
[28] [29] 

[4] 
 

[18] [19] [20] 

[21] 

[22] [23] [24] 

[25] 
 

[26] 

[27] 

Other Physical 

Features 
   

[28] [29] 

[4] 
 

[18] [19] [20] 

[21] 

[22] [23] [24] 

[25] 
 

[26] 

[27] 

Environment  [13] [3] [14] 
[15] [3] 

[16] 
  

[18] [19] [20] 

[21] 

[22] [23] [24] 

[25] 

[30] [31] 

[32] [16] 

[26] 

[27] 

Flight Plan     
[1] [3] 
[17] 

[18] [19] [20] 
[21] 

  
[26] 
[27] 

Control Input     
[1] [3] 

[17] 

[18] [19] [20] 

[21] 

[22] [23] [24] 

[25] 
[16] 

[26] 

[27] 

Intent/Language     
[1] [3] 

[17] 

[18] [19] [20] 

[21] 

[22] [23] [24] 

[25] 
 

[26] 

[27] 

Angle     
[1] [3] 

[17] 

[18] [19] [20] 

[21] 

[22] [23] [24] 

[25] 
[16]  

Thrust      
[18] [19] [20] 

[21] 

[22] [23] [24] 

[25] 
  

Lift  [14]    
[18] [19] [20] 
[21] 

[22] [23] [24] 
[25] 

  

Drag  [14]  
[28] [29] 

[4] 
 

[18] [19] [20] 

[21] 

[22] [23] [24] 

[25] 

[30] [31] 

[32] [16] 
 

Performance  [14]  
[28] [29] 

[4] 
 

[18] [19] [20] 

[21] 

[22] [23] [24] 

[25] 
 

[26] 

[27] 

Energy rate  [14] 
[15] [3] 

[16] 

[28] [29] 

[4] 
 

[18] [19] [20] 

[21] 
   

V. DATA 

The algorithms were trained and tested with 4D aircraft 

positional data provided by an En Route host Computer System 

(HCS). For each aircraft (labeled acid_cid, unique aircraft 

identifier), the train and test datasets consisted of time (time), 

an x-position (xCoord), a y-position (yCoord), and an altitude 

(altitude) associated with each timestep. Horizontal POF was 

available for training, labeled pofHorz with outputs straight 

(STR), and turn (TRN). For machine learning purposes, 

pofHorz was converted to binary values, 0 and 1, for TRN and 

STR, respectively. Similarly, vertical POF was labeled pofVert 

with outputs descending (DSC), ascending (ASC), and level 

(LVL). PofVert was converted to -1, 1, and 0, respectively.   

The only ground truth vertical POF data that was available 

for this study was GPS data. GPS data consisted of 103070 

timesteps for 57 flights and RADAR track data at 11307 unique 

data points for 57 flights. Both GPS and RADAR track datasets 

were then separated by acid_cid for training and testing, giving 

57 unique datasets. Training and testing datasets were created 

with a 2:1 ratio. There was an average class imbalance of 

87.6/12.4 percent. For the machine learning models, class 

weights were implemented to place more emphasis on the 

minority classes for the classifiers to learn equally from all 

classes. The RADAR track data has more noise than the GPS 

data. The method of data transmission has a significant impact 

on how noisy a dataset is. The RADAR track data used in this 

study was interpolated to have timesteps of ten seconds, 

whereas the GPS data has one-second timesteps. The 

performance of the models using GPS and RADAR track data 

is analyzed by taking into account this noise in the results 

section. 

VI. MODELS 

A. Regression 

The Python script that was developed for the regression model 

used the algorithm outlined in [17]. To verify the accuracy of 

the Python script developed for this study, the set of flight data 

and accuracy metrics from [17], were used. The development 

of this statistical approach also helped verify that the datasets 
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being used to train and test the machine learning models 

presented in this paper were the same datasets used in [17]. 

 

 

 

1) Horizontal POF 

The algorithm uses two tiers of testing to determine whether 

the aircraft is considered to be flying straight or turning. 

These tiers of testing are inherently conditional statements 

containing thresholds that determine the POF of an aircraft 

at a given timestep. 

If the first tier isn’t conclusive enough to determine 

the POF that the aircraft is in, then the second tier of testing 

is used. The first tier uses the Pearson correlation coefficient 

(Pearson’s r) for the XY coordinates in a time window 

surrounding the current row of flight data. This coefficient 

has a value between -1 and +1, which represents the linearity 

between different variables. The two thresholds that make up 

the first tier of testing are horzPearsonThreshHi and 

horzPearsonThreshLo [17]. If the Pearson’s r value was 

greater than the horzPearsonThreshHi, the aircraft is 

determined to be flying straight. If the value is less than the 

horzPearsonThreshLo, the aircraft is determined to be 

turning [17]. The SciPy Python library was used for 

calculating Pearson’s r and for deriving the linear regression 

equation [44]. 

The second tier of testing uses quadratic regression 

analysis and a flatness metric to provide the final POF 

determination. This tier can be seen as a filter to help reduce 

noise in the dataset [17]. Numpy was used for the rotation of 

data, the creation of the polynomial, and the flatness metric 

[47]. 

TABLE II.  HORIZONTAL AND VERTICAL THRESHOLDS 

Threshold* Value 

Vertical 

vertSlopeThresh 0.5, 1.5, 2.5 

vertTimeWindow 25, 55, 120 

Horizontal 

horzPearsonThreshHi 0.998, 0.997, 0.995 

horzPearsonThreshLo 0.6, 0.1 

horzRSqrThresh 0.92, 0.82, 0.4 

horzFlatnessThresh 0.25, 0.1 

horzTimeWindow 25, 40, 50, 60, 70, 80 

*Threshold definitions are provided in Appendix A. 

2) Vertical POF 

A detailed algorithm is given in [17], which calculates the 

slope of altitude data for a given time window to determine 

vertical POF. The SciPy Stats library was used to calculate 

the slope for the time window surrounding each timestep 

[44]. The parameters that can be changed in this program to 

lower the probability of error are the vertical slope threshold, 

vertSlopeThresh, and the vertical time window, 

vertTimeWindow. A design of experiments study was 

performed by [17] to determine the best set of thresholds for 

determining vertical POF. 

The regression model was run with vertical POF 

ground truth data for all 57 flights using the combination of 

thresholds given in Table 3. The error probabilities for the 

Figure I.  Research Approach 

Figure II. 2D Trajectory – RADAR Track Data 

Figure III. 2D Trajectory - GPS Data 
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model were compared with the error probabilities from the 

study performed in [17]. The results are described in detail 

in the ‘Results’ section of this paper. 

3) Preparing the Program for Combined Flight Data 

An acid_cid needs to be associated with each timestep, to 

run the program with combined flight data. The program 

uses a filter to split the dataset by flight to create an array of 

flight datasets. A loop structure is used to handle each flight 

separately and apply the tiers of testing to the changing time 

window. The output consists of a text file containing the total 

combined probability of error for all combined flights, as 

well as individual flight results.  

B. Support Vector Machine 

The preprocessing steps that were taken to shape the problem 

into a supervised learning problem included splitting the flights 

by their acid_cid and turning a sequence of five observations 

into a single vector with an output (𝑛 − 1) times for 𝑛 

observations. 

The way that the new vector is developed for supervised 

learning is as follows. Suppose that there are two consecutive 

observations with xCoord, yCoord, altitude, and the POF. The 

corresponding vector is formed by taking the magnitude of the 

difference between consecutive xCoords, yCoords, and 

altitudes as the three components of the input X and the 

classification of the second observation as the output Y. This 

process is done for each pair of consecutive observations in the 

flight record to obtain the input file for the supervised learning 

algorithm. The supervised learning algorithm used is the Scikit-

learn SVC module with a linear kernel and 1/(number of 

features) for gamma 𝛾 [48].  

In attempts to improve the accuracy of our model, we used 

multiple methods of preprocessing our data. One such method 

was computing the angles between time steps, aiming for a 

connection between larger angles and turning trajectory, but 

this was inaccurate because the time steps were too close 

together to produce any meaningful differentiation between 

turning and non-turning states, as the angles were too small. We 

attempted to remedy this by taking angles between larger time 

steps, which also was unable to produce good results. We also 

tried placing the angles on a logarithmic scale to magnify 

differences between turning and not turning states. The best 

SVC model with our preprocessing methods obtained a 73% 

average accuracy over 10 runs, using the difference in latitude 

and longitude as input to the algorithm. In addition, we found 

that adding a vertical component (i.e., keeping the altitude 

variable) did not improve results. 

C. Long Short-Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) model was utilized 

next to improve results. LSTM networks are specialized 

machine learning models for handling sequential data. These 

are based on recurrent neural networks (RNNs); however, they 

do not suffer from gradient vanishing or exploding problems. 

An LSTM captures correlation in timesteps of a sequential 

dataset and is an ideal candidate model for the aircraft trajectory 

prediction [38]. 

 There have been a few studies that use LSTM models for 

aircraft trajectory prediction [45] [46]. Whereas these studies 

tend to focus on overall trajectory prediction in four dimensions 

which include inclement weather, human behavior, and other 

uncertainties, this paper is focused on using an LSTM network 

to significantly reduce the amount of error in a small area of 

trajectory prediction which is the determination of an aircraft’s 

POF. 

 The Keras Python Library was used to design a multivariate 

time series one-step forecast model [43]. The first task was to 

prepare the dataset for the model, which involved converting 

the time series data into a format for supervised learning. 

Formatting the problem for supervised learning included 

normalizing the data, defining an input sequence, and defining 

an output sequence [41][42]. 

 Since horizontal POF is concerned with binary 

classification (1 and 0) and vertical POF is concerned with 

multi-class classification (1, 0, and -1), two separate models 

were developed to tackle each problem separately (Figure IV). 

The sequential model network for horizontal POF consists of a 

hidden LSTM layer with 50 neurons and an activation layer 

with a sigmoid function. The network was trained using 8 

epochs and a batch size of 72. The only change for the vertical 

POF model was that a 𝑡𝑎𝑛ℎ activation function was used in the 

activation layer, and the model was trained using a batch size 

of 150. The loss functions used to calculate the accuracy of the 

models were 'binary cross-entropy' for horizontal POF and 

‘hinge’ for vertical POF. 

 The hyperparameters used for these models were 

determined using a simple search. Throughout development, if 

overfitting or underfitting occurred, the hyperparameters were 

changed accordingly. The final set of hyperparameters 

produced the highest accuracy. 

 For determining the final forecasted POF, filters were 

applied to the outputs of the activation functions. These filters 

rounded the outputs to 0 and 1 for horizontal POF, and 0, 1, -1 

for vertical POF. These filters, when combined with the proper 

activation functions, are shown to prove accurate results, as 

shown in the results section.
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Figure IV LSTM Models 

D. Neural Ordinary Differential Equations (NODE) 

We also utilized a Neural Ordinary Differential Equations 

(NODE) model [39]. NODE is a type of machine learning 

model formulated from the popular Residual Network (ResNet) 

architecture [40]. The residual connection blocks formed in 

ResNets are considered as steps in Euler’s Method for solving 

an Ordinary Differential Equation (ODE). Once this realization 

is made, the solution method can be arbitrarily modified, 

opening this class of models to a vast range of mathematical 

tools that have been in development for, in some cases, 

centuries. Many of these solution methods offer significant 

advantages over the standard residual network. In particular, 

the adjoint method for solving the ODE backward in time offers 

fixed memory cost, a remarkably valuable asset for large 

models [39].  

 The primary advantage of NODE in our problem is the 

ability to be defined continuously, with no fixed number of 

layers as would be in the classical models. This advantage 

means that a flight trajectory, which is a continuous physical 

process, can be modeled more closely. Our model defines the 

dynamics of the network through a simple convolutional 

network and solves the resulting problem using the adjoint 

method. As a first step, our model must have some function 

representing the dynamics for the model, allowing the ODE 

solver to integrate through time and produce a prediction. The 

network used for this purpose is a convolutional network with 

2 sequential blocks. In each block, a 1x1 convolution with a 

length 3 filter is applied to a sample, and the output is passed 

through the ReLU activation function. 

 The central part of the model is the ODE solver. We used 

the solver proposed in [39]. Using PyTorch and the adjoint 

method described in detail in [39], we developed a model that 

propagates from the initial state to the final state. Our solver 

can produce features of the data that are, (1) activated using a 

ReLU function, (2) flattened for input to a linear classifier, and 

(3) finally run through the classifier. The model does not have 

a fixed number of layers as in the LSTM model and can run 

with a constant memory cost. Optimization of the network is 

performed using stochastic gradient descent with momentum 

(learning rate of 0.1) and mean square error as the loss function. 

 The NODE model is currently able to classify one variable, 

meaning that only horizontal POF or vertical POF may be 

determined in a single model. However, we look to extend this 

so that the model can perform multiple classifications, i.e., 

allowing the model to classify both horizontal and vertical POF. 

Our model does well with classifying horizontal and vertical 

POF individually, so we believe that adding the ability to 

perform multiple classifications will make this model quite 

useful for an all-in-one trajectory modeler.  

VII. RESULTS 

The events used to calculate the probability of false calls and 

missed calls of each model [17] can be seen in Table 3.  

 𝑃(𝑀𝐶)  =  
𝑀𝐶

(𝑀𝐶 +  𝑉𝐶)
 (1) 

The probability of missed calls “is the estimated probability of 

falsely detecting a turn/vertical transition that actually does not 

occur” [17]. 

 𝑃(𝐹𝐶)  =  
𝐹𝐶

(𝐹𝐶 +  𝑁𝐶)
 (2) 

The probability of false calls is where the algorithm determines 

the incorrect aircraft POF. Although the loss function accuracy 

was calculated for each machine learning model, these 

probabilities are the most useful way to compare performance. 

TABLE III.  HORIZONTAL AND VERTICAL EVENT CALLS [17] 

  Algorithm - Detected Event 

  Turn No Turn 

  
Ascending or 

descending 
Level 

Actual 

Event 

Turn 
Valid Call (VC) 

Missed Call 

(MC) Ascending or descending 

No Turn 
False Call (FC) 

Valid No 

Call (NC) Level 

 

When compared to the results obtained by the program in [17], 

it was seen that the Python regression program developed in 

this study had slightly lower probabilities of error. For 

horizontal POF, the probability of false calls was reduced by 

3.45%, and the probability of missed calls was reduced by 

6.01%. For vertical POF, the probability of false calls was 

reduced by 4.39%, and the probability of missed calls was 

reduced by 3.76%. Note that the results for the regression 

model varied as the thresholds were changed and most often 

performed closer to the error probabilities of the legacy 

program created in [17].  

 The LSTM-RNN model performed the best out of all the 

models. Since this model was created for single-step forecasts, 

it can also be used as a replacement to the classic regression 

algorithms that have been used up to this point in the post-flight 
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analysis. When this LSTM-RNN model is further developed for 

multi-step prediction, it will become useful for real-time 

trajectory prediction. Our results prove that LSTM-RNN 

models are suitable for aircraft POF forecasting and provide a 

solid foundation for further research using these networks in 

practice. 

TABLE IV.  POF WITH GPS DATA 

Phase of Flight 

with GPS Data 

Type of Model 

Legacy Regression SVM LSTM NODE 

Probability 

False 

Calls 

Horz 0.079 0.0445 0.08 0.00 0.06 

Vert 0.050 0.0061 0.14 0.01 0.06 

Probability 

Missed 
Calls 

Horz 0.069 0.0089 0.22 0.00 0.07 

Vert 0.048 0.0104 0.02 0.00 0.05 

Accuracy 

(Loss 

Function) 

Horz X X 0.70 1.00 0.87 

Vert X X 0.84 0.99 0.89 

TABLE V.  HORIZONTAL POF WITH RADAR TRACK DATA 

Horizontal Phase of Flight 

with RADAR Track Data 

Type of Model 

Regression SVM LSTM NODE 

Probability False Calls 0.0445 0.11 0.00 0.06 

Probability Missed Calls 0.0089 0.16 0.00 0.03 

Accuracy (Loss Function) X 0.73 1.00 0.91 

 

We found the SVM model not to be suitable for this problem. 

We were able to achieve only at best mediocre results with 

significant preprocessing of data, whereas the other models 

performed better with less human intervention. Our tests show 

that the SVM struggles significantly to classify turning states, 

and this is likely due to a significant imbalance of data in the 

training set. Due to this imbalance, the SVM overfits the dataset 

and performs poorly on new examples, leading to a high error 

in testing. 

 NODE seems to be a promising step forward for flight 

trajectory prediction. With their previously mentioned benefits, 

including naturally continuous dynamics, extendibility to 

modeling a path entirely, and computational benefits, we 

believe that NODE will provide a useful framework for a more 

general-purpose analysis. Although less specialized in POF 
prediction than the LSTM, the other advantages of NODE make 

them an appealing option for producing flight trajectory curves 

using limited data.  

VIII. CONCLUSION 

As technology reduces the burden on ground control, a higher 

number of aircraft can occupy the airspace, making air travel 

both safer and more accessible. POF prediction and real-time 

aircraft data acquisition, processing, and analytics, in 

particular, are emerging technologies that will modernize 

traditional trajectory prediction systems. This paper presented 

a regression model to create a baseline for evaluating three AI 

models, LSTM-RNN, NODE, and SVM.  

FUTURE RECOMMENDATION 

The research presented in this paper gives a strong foundation 

for future optimization of the machine learning models by 

adding more layers and extending the proposed models, 

specifically LSTM and NODE for multi-step forecasting. If 

aircraft POF can be predicted in advance with a low probability 

of error, the performance of complete trajectory prediction 

systems will improve. The developed models treated horizontal 

and vertical POF as two separate problems for simplicity.  

LIMITATIONS OF RESEARCH 

There are a few limitations of this research. One limitation is 

that the results only show the probability of error for single-step 

forecasts. While the LSTM-RNN model performed better for 

the available data, further evaluation with additional data set 

and k-fold cross-validation is required to assess the robustness 

of the model. 
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Appendix A. Definitions of Data Parameters And Thresholds 
Name Definition 

acid_cid The unique aircraft identifier, used to filter the 

data by flight. 

vertSlopeThresh Threshold which determines the bound where an 

aircraft is determined to be ascending or 

descending [17]. 

vertTimeWindow The window of timestamps surrounding the 

current timestamp in the vertical regression 

algorithm [17]. 

horzPearsonThreshHi The upper Pearson’s r bound which determines 

whether an aircraft is straight [17]. 

horzPearsonThreshLo The lower Pearson’s r bound which determines 

whether an aircraft is turning [17]. 

horzRSqrThresh Determines whether an aircraft is turning in the 

second level of testing using the R squared 

metric [17]. 

horzFlatnessThresh Determines whether an aircraft is turning in the 

second level of testing using the flatness metric 

explained in detail in [17]. 

horzTimeWindow The window of timestamps surrounding the 
current timestamp in the horizontal regression 

algorithm [17]. 

 

https://doi.org/10.2514/6.2004-4788
https://doi.org/10.1162/neco.1997.9.8.1735
https://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/
https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/
https://keras.io/
https://www.scipy.org/
https://doi.org/10.1109/IJCNN.2018.8489734
https://numpy.org/
https://scikit-learn.org/stable/modules/svm.html

	I.  Introduction
	II. Related work
	A. Existing Trajectory Prediction Practices
	B. Limitations

	III. current and proposed trajectory & phase of flight prediction systems
	IV.  Method
	V. Data
	VI. Models
	A. Regression
	1) Horizontal POF
	*Threshold definitions are provided in Appendix A.
	2) Vertical POF
	3) Preparing the Program for Combined Flight Data

	B. Support Vector Machine
	C. Long Short-Term Memory (LSTM)
	D. Neural Ordinary Differential Equations (NODE)

	VII. Results
	VIII. Conclusion
	Future recommendation
	Limitations of research
	Contributions
	Acknowledgments
	References


