

Quantifying Uncertainty in Mathematical Models

Liam Doherty

Rowan College at Burlington County

May 6, 2022

[Quantifying Uncertainty in Mathematical Models](#page-28-0)

Liam Doherty Rowan College at Burlington County

 Ω

€ □ >

Outline

- 2 [Background](#page-5-0)
- 3 [Important Objects](#page-7-0)
- 4 [Computational Results](#page-18-0)
- 5 [Conclusions and References](#page-26-0)

 QQ \leftarrow

Liam Doherty Rowan College at Burlington County

Goals of the Talk

- What is research in math?
- What kind of problems can you solve?
- How do classes apply?

4 0 F

 QQ

The Goals of My Work

Liam Doherty Rowan College at Burlington County

 Ω

4 0 F

An Example: Manufacturing

Liam Doherty Rowan College at Burlington County

 299

How We Model Uncertainty

We model (frequently) as distributions!

Figure: Standard Normal Distribution

Liam Doherty Rowan College at Burlington County

4 0 F

 QQ

Uncertain Parameters

What if we don't know mean or variance?

 \leftarrow

 QQ

"Distances" Between Distributions

A notion of "distance" between (discrete) probability distributions is the relative entropy or Kullback-Leibler Divergence:

$$
D_{\mathsf{KL}}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}
$$

 QQ

Liam Doherty Rowan College at Burlington County

[Introduction](#page-2-0) [Background](#page-5-0) **[Important Objects](#page-7-0)** [Computational Results](#page-18-0) [Conclusions and References](#page-26-0)
000 000 000 000000000000 0000000000

Usefulness of KL Divergence & Uncertainty Modelling

- Physics Oscillating spring experiment: Model spring $constant$ k as a distribution
- Social science Bias in random sampling (e.g., polling voting preferences from a city that is skewed towards one party)

Liam Doherty Rowan College at Burlington County

 Ω

Example: Coin Toss

$$
D_{\mathsf{KL}}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}
$$

= 0.5 log $\frac{0.5}{0.6}$ + 0.5 log $\frac{0.5}{0.4}$
 ≈ 0.02041

[Quantifying Uncertainty in Mathematical Models](#page-0-0)

Liam Doherty Rowan College at Burlington County

 299

∍

●→

 \prec ≣

4 0 F

The Continuous Version

For continuous distributions (e.g., normal), we have

$$
D_{\mathsf{KL}}(P||Q) = \int_{\mathcal{X}} \log \left(\frac{dP}{dQ} \right) dP.
$$

Involves calculus, since now our random variable can be anything in a range of values! An example would be a number picked at random between 0 and 1

 Ω

An Important Inequality

Jensen's inequality says that

 $f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]$

if f is convex. A visual plausibility argument:

Figure: Illustration of Jensen's Inequality

Liam Doherty Rowan College at Burlington County

 Ω

A Use of Jensen

 D_{KI}

We can use Jensen's inequality to show the relative entropy is non-negative:

$$
(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}
$$

= $\mathbb{E}_{P} \left[\log \frac{P}{Q} \right]$
= $\mathbb{E}_{P} \left[-\log \frac{Q}{P} \right]$
 $\ge -\log \mathbb{E}_{P} \left[\frac{Q}{P} \right]$
 $\ge -\log \sum_{x} P(x) \frac{Q(x)}{P(x)} = 0.$

Liam Doherty Rowan College at Burlington County

4 0 F

 299

A Game Example

A pair of (possibly unfair) dice are simultaneously rolled. The outcomes are either

- Sum is in between 5 and 10 (inclusive): You win \$1
- Otherwise: You lose \$1

Question: What is the worst that can happen for you, under the assumption that you can guess how rigged the dice are?

 Ω

[Introduction](#page-2-0) [Background](#page-5-0) [Important Objects](#page-7-0) [Computational Results](#page-18-0) [Conclusions and References](#page-26-0)

The Outcomes

- Green Outcome of a roll
- Blue Lose money
- Orange Win money

Liam Doherty Rowan College at Burlington County

4 0 8

 299

Some Setup

- \bullet F a function that returns 1 if we lose money, and 0 if we win money; our *Quantity of Interest* (QoI)
- \bullet Q the true, unknown distribution
- \bullet P our guess (assume fair dice)

Our question, mathematically: What is the *largest* that

 \sum x $F(x)Q(x)$

 Ω

could be?

A Major Tool

We define the *exponential integral*

$$
\Lambda_c = \frac{1}{c} \log \sum_x e^{cF(x)} P(x)
$$

for $c > 0$ and with the restriction that $F > 0$.

The motivation for this definition is outside the scope of this talk. It is related to a field called *large deviation theory*.

 Ω

Liam Doherty Rowan College at Burlington County

The Punchline

The main reason for defining Λ_c is

$$
\sum_{x} F(x) Q(x) \leq \Lambda_c + \frac{1}{c} D_{\mathsf{KL}}(P || Q),
$$

which means now we have an upper bound for what we want (and can optimize the right hand side over c)!

A crude (but true) interpretation: True performance is no worse than a combination of approximated performance and the error of approximation.

 Ω

The Game Example in Action

Suppose that both dice had distribution

$$
Q=(.5,.1,.1,.1,.1,.1).
$$

The probability matrix for the outcomes of a two-dice roll is

Liam Doherty Rowan College at Burlington County

 Ω

4 0 8

4 0 F

 Ω

The Game Example in Action

Denote

- \bullet x Outcome of roll 1
- \bullet y Outcome of roll 2

The true performance (expected loss) is

$$
\sum_{x,y} F(x,y) Q(x) Q(y) = 0.49.
$$

Let's see what our bound can tell us, under the approximation of fair dice!

Liam Doherty Rowan College at Burlington County

The Game Example in Action

Assume the fair distribution

$$
P = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6).
$$

Then we have the true relative entropy (with a slight abuse of notation)

$$
D_{\mathsf{KL}}(P||Q) \approx 0.485.
$$

Let's say for sake of argument (since Q is supposed to be unknown) that we estimate $D_{KL}(P||Q) \leq 0.5 = B$. What happens to $\Lambda_c + \frac{1}{c}$ $\frac{1}{c}B$?

 Ω

Liam Doherty Rowan College at Burlington County

The Game Example in Action

It isn't sharp, but it captures the upper bound on performance, as expected! We could optimize the bound over c to obtain the tightest bound at about 0.727.

Figure: Performance Bound and True Performance

 \leftarrow

[Quantifying Uncertainty in Mathematical Models](#page-0-0)

Liam Doherty Rowan College at Burlington County

 Ω

A (More) Realistic Problem

Consider the initial value problem (ODE problem)

$$
\frac{d}{dt}u(t)=-\lambda u(t), u(0)=1,
$$

where $\lambda \sim U[0,1]$. Our goal is to obtain bounds on the average of the quantity of interest

$$
F(k) = u(1; \lambda).
$$

Liam Doherty Rowan College at Burlington County

 Ω

4 0 8

Simulated Solutions

For a fixed λ , the solution is $u(t; \lambda) = e^{-\lambda t}$.

Figure: Some solutions of the ODE

[Quantifying Uncertainty in Mathematical Models](#page-0-0)

Liam Doherty Rowan College at Burlington County

 Ω

€ □ >

A Different Underlying Distribution

Suppose that the "true" distribution is $\lambda \sim \text{beta}(\alpha = 1.5, \beta = 1.5)$:

Figure: True and Approximated Distribution

[Quantifying Uncertainty in Mathematical Models](#page-0-0)

Liam Doherty Rowan College at Burlington County

 Ω

4 0 F

The True Performance & The Bound

True performance: $\int_0^1 e^{-\lambda}\frac{1}{B(1.5,1.5)}\sqrt{\lambda(1-\lambda)}d\lambda\approx 0.626.$ Bound on relative entropy: 0.05 (True relative entropy \approx 0.484).

Figure: Performance Bound for ODE Model

Liam Doherty Rowan College at Burlington County

 Ω

Conclusions

In this talk, we:

- Addressed the modelling of uncertainty in mathematical models
- Considered some concrete models in which we are interested in uncertainty analysis
- **•** Showed empirically we can obtain performance measures on these models under assumptions about the underlying uncertainty

 Ω

References

- Kamaljit Chowdhary and Paul Dupuis, Distinguishing and Integrating Aleatoric and Epistemic Variation in Uncertainty Quantification
- P. Dupuis, M. Katsoulakis, Y. Pantazis, P. Plecháč, Path-Space Information Bounds for Uncertainty Quantification and Sensitivity Analysis of Stochastic Dynamics

 Ω

Thank You!

Contact: lfd27@drexel.edu

 299 4 0 F E ∍

Liam Doherty Rowan College at Burlington County