Background	Import

Quantifying Uncertainty in Mathematical Models

Liam Doherty

Rowan College at Burlington County

May 6, 2022

Liam Doherty

Rowan College at Burlington County

Introduction 000	Background 00	Important Objects 00000000000	Computational Results	Conclusions and References

Outline

- 2 Background
- Important Objects
- 4 Computational Results
- **5** Conclusions and References

- < ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > <

Rowan College at Burlington County

Liam Doherty

Conclusions and References

Goals of the Talk

- What *is* research in math?
- What kind of problems can you solve?
- How do classes apply?

Liam Doherty

Rowan College at Burlington County

Conclusions and References

The Goals of My Work

Liam Doherty

Rowan College at Burlington County

< (T) >

Important Objects

Computational Results

Conclusions and References

An Example: Manufacturing

Liam Doherty

Rowan College at Burlington County

Important Objects

Computational Results

Conclusions and References

How We Model Uncertainty

We model (frequently) as distributions!

Figure: Standard Normal Distribution

Liam Doherty

Rowan College at Burlington County

Introduction	Background	Important Objects	Computational Results	Conclusions and References
000	0●	0000000000	00000000	

Uncertain Parameters

What if we don't know mean or variance?

Figure: Changes in Variance

Liam Doherty

Quantifying Uncertainty in Mathematical Models

Rowan College at Burlington County

N(0, 2) N(0, 1) N(0, 0,5)

"Distances" Between Distributions

A notion of "distance" between (discrete) probability distributions is the *relative entropy* or *Kullback-Leibler Divergence*:

$$D_{\mathsf{KL}}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

Rowan College at Burlington County

Liam Doherty

Conclusions and References

Usefulness of KL Divergence & Uncertainty Modelling

- Physics Oscillating spring experiment: Model spring constant k as a distribution
- Social science Bias in random sampling (e.g., polling voting preferences from a city that is skewed towards one party)

Rowan College at Burlington County

Quantifying Uncertainty in Mathematical Models

Liam Doherty

Introduction 000	Background 00	Important Objects	Computational Results	Conclusions and References

Example: Coin Toss

Result (x)	Probability	Result (x) Probability
Н	0.5	Н	0.6
Т	0.5	Т	0.4
Table: Fair Coin (Truth/P)		Table: Bias	ed Coin (Guess/ Q)

$$egin{aligned} D_{ extsf{KL}}(P||Q) &= \sum_{x} P(x) \log rac{P(x)}{Q(x)} \ &= 0.5 \log rac{0.5}{0.6} + 0.5 \log rac{0.5}{0.4} \ &pprox 0.02041 \end{aligned}$$

Liam Doherty

Quantifying Uncertainty in Mathematical Models

Rowan College at Burlington County

< **∂** ► < ∃

Introduction 000	Background 00	Important Objects	Computational Results 00000000	Conclusions and References

The Continuous Version

For continuous distributions (e.g., normal), we have

$$D_{\mathsf{KL}}(P||Q) = \int_{\mathcal{X}} \log\Big(rac{dP}{dQ}\Big) dP.$$

Involves calculus, since now our random variable can be anything in a range of values! An example would be a number picked at random between 0 and 1.

An Important Inequality

Jensen's inequality says that

 $f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]$

if f is convex. A visual plausibility argument:

Figure: Illustration of Jensen's Inequality

Liam Doherty

Rowan College at Burlington County

Introduction 000	Background 00	Important Objects	Computational Results	Conclusions and References

A Use of Jensen

We can use Jensen's inequality to show the relative entropy is non-negative:

$$D_{KL}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$
$$= \mathbb{E}_{P} \Big[\log \frac{P}{Q} \Big]$$
$$= \mathbb{E}_{P} \Big[-\log \frac{Q}{P} \Big]$$
$$\geq -\log \mathbb{E}_{P} \Big[\frac{Q}{P} \Big]$$
$$\geq -\log \sum_{x} P(x) \frac{Q(x)}{P(x)} = 0.$$

Rowan College at Burlington County

Quantifying Uncertainty in Mathematical Models

Liam Doherty

A Game Example

A pair of (possibly unfair) dice are simultaneously rolled. The outcomes are either

- Sum is in between 5 and 10 (inclusive): You win \$1
- Otherwise: You lose \$1

Question: What is the *worst* that can happen for you, under the assumption that you can guess *how rigged* the dice are?

Introd	
000	

Background

Important Objects

Computational Results

Conclusions and References

The Outcomes

Roll	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

- Green Outcome of a roll
- Blue Lose money
- Orange Win money

Rowan College at Burlington County

Liam Doherty

Introduction 000	Background 00	Important Objects	Computational Results	Conclusions and References

Some Setup

- F a function that returns 1 if we lose money, and 0 if we win money; our *Quantity of Interest* (QoI)
- Q the true, unknown distribution
- P our guess (assume fair dice)

Our question, mathematically: What is the largest that

 $\sum_{x} F(x)Q(x)$

could be?

Introduction 000	Background 00	Important Objects 00000000●0	Computational Results	Conclusions and References

A Major Tool

We define the exponential integral

$$\Lambda_c = \frac{1}{c} \log \sum_{x} e^{cF(x)} P(x)$$

for c > 0 and with the restriction that $F \ge 0$.

The motivation for this definition is outside the scope of this talk. It is related to a field called *large deviation theory*.

Rowan College at Burlington County

Liam Doherty

Introduction 000	Background 00	Important Objects	Computational Results 00000000	Conclusions and References

The Punchline

The main reason for defining Λ_c is

$$\sum_{x} F(x)Q(x) \leq \Lambda_{c} + \frac{1}{c}D_{\mathsf{KL}}(P||Q),$$

which means now we have an upper bound for what we want (and can optimize the right hand side over c)!

A crude (but true) interpretation: True performance is no worse than a combination of approximated performance and the error of approximation.

Conclusions and References

The Game Example in Action

Suppose that both dice had distribution

$$Q = (.5, .1, .1, .1, .1, .1).$$

The probability matrix for the outcomes of a two-dice roll is

Roll	1	2	3	4	5	6
1	0.25	0.05	0.05	0.05	0.05	0.05
2	0.05	0.01	0.01	0.01	0.01	0.01
3	0.05	0.01	0.01	0.01	0.01	0.01
4	0.05	0.01	0.01	0.01	0.01	0.01
5	0.05	0.01	0.01	0.01	0.01	0.01
6	0.05	0.01	0.01	0.01	0.01	0.01

Liam Doherty

Rowan College at Burlington County

Conclusions and References

The Game Example in Action

Denote

- x Outcome of roll 1
- y Outcome of roll 2

The true performance (expected loss) is

$$\sum_{x,y} F(x,y)Q(x)Q(y) = 0.49.$$

Let's see what our bound can tell us, under the approximation of fair dice!

Liam Doherty

Quantifying Uncertainty in Mathematical Models

Rowan College at Burlington County

Conclusions and References 000

The Game Example in Action

Assume the fair distribution

$$P = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6).$$

Then we have the true relative entropy (with a slight abuse of notation)

$$\mathcal{D}_{\mathsf{KL}}(P||Q) pprox 0.485.$$

Let's say for sake of argument (since Q is supposed to be unknown) that we estimate $D_{\text{KL}}(P||Q) \leq 0.5 = B$. What happens to $\Lambda_c + \frac{1}{c}B$?

Liam Doherty

The Game Example in Action

It isn't sharp, but it captures the upper bound on performance, as expected! We could optimize the bound over c to obtain the tightest bound at about 0.727.

Figure: Performance Bound and True Performance

Liam Doherty

Rowan College at Burlington County

Introduction Background Important Objects Computatio

Computational Results

Conclusions and References

A (More) Realistic Problem

Consider the initial value problem (ODE problem)

$$\frac{d}{dt}u(t)=-\lambda u(t), \quad u(0)=1,$$

where $\lambda \sim U[0,1]$. Our goal is to obtain bounds on the average of the quantity of interest

$$F(k)=u(1;\lambda).$$

Rowan College at Burlington County

Liam Doherty

Introduction 000	Background 00	Important Objects	Computational Results	Conclusions and References

Simulated Solutions

For a fixed λ , the solution is $u(t; \lambda) = e^{-\lambda t}$.

Figure: Some solutions of the ODE

Liam Doherty

Quantifying Uncertainty in Mathematical Models

Rowan College at Burlington County

IntroductionBackgroundImportant Objects000000000000000

Computational Results

Conclusions and References

A Different Underlying Distribution

Suppose that the "true" distribution is $\lambda \sim \text{beta}(\alpha = 1.5, \beta = 1.5)$:

Figure: True and Approximated Distribution

Liam Doherty

Quantifying Uncertainty in Mathematical Models

Rowan College at Burlington County

Conclusions and References

The True Performance & The Bound

True performance: $\int_0^1 e^{-\lambda} \frac{1}{B(1.5,1.5)} \sqrt{\lambda(1-\lambda)} d\lambda \approx 0.626$. Bound on relative entropy: 0.05 (True relative entropy ≈ 0.484).

Figure: Performance Bound for ODE Model

Liam Doherty

Rowan College at Burlington County

Introduction 000	Background 00	Important Objects	Computational Results	Conclusions and References ●00

Conclusions

In this talk, we:

- Addressed the modelling of uncertainty in mathematical models
- Considered some concrete models in which we are interested in uncertainty analysis
- Showed empirically we can obtain performance measures on these models under assumptions about the underlying uncertainty

Liam Doherty

Introduction	Background	Important Objects	Computational Results	Conclusions and References
000	00	00000000000		○●○

References

- Kamaljit Chowdhary and Paul Dupuis, *Distinguishing and Integrating Aleatoric and Epistemic Variation in Uncertainty Quantification*
- P. Dupuis, M. Katsoulakis, Y. Pantazis, P. Plecháč, Path-Space Information Bounds for Uncertainty Quantification and Sensitivity Analysis of Stochastic Dynamics

Background	Important Objects	Computationa

Conclusions and References

Thank You!

Contact: Ifd27@drexel.edu

・ロット 白マ キャネボット 白マシック

Rowan College at Burlington County

Liam Doherty