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Goals of the Talk

What is research in math?

What kind of problems can you solve?

How do classes apply?

Liam Doherty Rowan College at Burlington County

Quantifying Uncertainty in Mathematical Models



Introduction Background Important Objects Computational Results Conclusions and References

The Goals of My Work

Uncertainty Quantification

Tools

Probability & Statistics

Mathematical Modelling (Calculus, ODEs)

Applications

Machine Learning

Physical Problems (Fracture Mechanics)

Liam Doherty Rowan College at Burlington County

Quantifying Uncertainty in Mathematical Models



Introduction Background Important Objects Computational Results Conclusions and References

An Example: Manufacturing

Specify Tolerance

Design Process

Uncertainty Quantification Analysis

Analysis Acceptable?

Assessment Complete

No

Yes
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How We Model Uncertainty

We model (frequently) as distributions!

Figure: Standard Normal Distribution
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Uncertain Parameters

What if we don’t know mean or variance?

Figure: Changes in Mean Figure: Changes in Variance
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”Distances” Between Distributions

A notion of ”distance” between (discrete) probability distributions
is the relative entropy or Kullback-Leibler Divergence:

DKL(P||Q) =
∑
x

P(x) log
P(x)

Q(x)

Figure: Low KL Divergence Figure: High KL Divergence
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Usefulness of KL Divergence & Uncertainty Modelling

Physics - Oscillating spring experiment: Model spring
constant k as a distribution

Social science - Bias in random sampling (e.g., polling voting
preferences from a city that is skewed towards one party)
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Example: Coin Toss

Result (x) Probability

H 0.5
T 0.5

Table: Fair Coin (Truth/P)

Result (x) Probability

H 0.6
T 0.4

Table: Biased Coin (Guess/Q)

DKL(P||Q) =
∑
x

P(x) log
P(x)

Q(x)

= 0.5 log
0.5

0.6
+ 0.5 log

0.5

0.4
≈ 0.02041
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The Continuous Version

For continuous distributions (e.g., normal), we have

DKL(P||Q) =

∫
X

log
(dP
dQ

)
dP.

Involves calculus, since now our random variable can be anything
in a range of values! An example would be a number picked at
random between 0 and 1.
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An Important Inequality

Jensen’s inequality says that

f (E[x ]) ≤ E[f (x)]

if f is convex. A visual plausibility argument:

Figure: Illustration of Jensen’s Inequality
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A Use of Jensen

We can use Jensen’s inequality to show the relative entropy is
non-negative:

DKL(P||Q) =
∑
x

P(x) log
P(x)

Q(x)

= EP

[
log

P

Q

]
= EP

[
− log

Q

P

]
≥ − logEP

[Q
P

]
≥ − log

∑
x

P(x)
Q(x)

P(x)
= 0.
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A Game Example

A pair of (possibly unfair) dice are simultaneously rolled. The
outcomes are either

Sum is in between 5 and 10 (inclusive): You win $1

Otherwise: You lose $1

Question: What is the worst that can happen for you, under the
assumption that you can guess how rigged the dice are?
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The Outcomes

Roll 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

Green - Outcome of a roll

Blue - Lose money

Orange - Win money
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Some Setup

F - a function that returns 1 if we lose money, and 0 if we win
money; our Quantity of Interest (QoI)

Q - the true, unknown distribution

P - our guess (assume fair dice)

Our question, mathematically: What is the largest that∑
x

F (x)Q(x)

could be?
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A Major Tool

We define the exponential integral

Λc =
1

c
log
∑
x

ecF (x)P(x)

for c > 0 and with the restriction that F ≥ 0.

The motivation for this definition is outside the scope of this talk.
It is related to a field called large deviation theory.
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The Punchline

The main reason for defining Λc is∑
x

F (x)Q(x) ≤ Λc +
1

c
DKL(P||Q),

which means now we have an upper bound for what we want (and
can optimize the right hand side over c)!

A crude (but true) interpretation: True performance is no worse
than a combination of approximated performance and the error of
approximation.
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The Game Example in Action

Suppose that both dice had distribution

Q = (.5, .1, .1, .1, .1, .1).

The probability matrix for the outcomes of a two-dice roll is
Roll 1 2 3 4 5 6

1 0.25 0.05 0.05 0.05 0.05 0.05

2 0.05 0.01 0.01 0.01 0.01 0.01

3 0.05 0.01 0.01 0.01 0.01 0.01

4 0.05 0.01 0.01 0.01 0.01 0.01

5 0.05 0.01 0.01 0.01 0.01 0.01

6 0.05 0.01 0.01 0.01 0.01 0.01
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The Game Example in Action

Denote

x - Outcome of roll 1

y - Outcome of roll 2

The true performance (expected loss) is∑
x ,y

F (x , y)Q(x)Q(y) = 0.49.

Let’s see what our bound can tell us, under the approximation of
fair dice!
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The Game Example in Action

Assume the fair distribution

P = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6).

Then we have the true relative entropy (with a slight abuse of
notation)

DKL(P||Q) ≈ 0.485.

Let’s say for sake of argument (since Q is supposed to be
unknown) that we estimate DKL(P||Q) ≤ 0.5 = B. What happens
to Λc + 1

cB?
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The Game Example in Action

It isn’t sharp, but it captures the upper bound on performance, as
expected! We could optimize the bound over c to obtain the
tightest bound at about 0.727.

Figure: Performance Bound and True Performance
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A (More) Realistic Problem

Consider the initial value problem (ODE problem)

d

dt
u(t) = −λu(t), u(0) = 1,

where λ ∼ U[0, 1]. Our goal is to obtain bounds on the average of
the quantity of interest

F (k) = u(1;λ).
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Simulated Solutions

For a fixed λ, the solution is u(t;λ) = e−λt .

Figure: Some solutions of the ODE

Liam Doherty Rowan College at Burlington County

Quantifying Uncertainty in Mathematical Models



Introduction Background Important Objects Computational Results Conclusions and References

A Different Underlying Distribution

Suppose that the ”true” distribution is λ ∼ beta(α = 1.5, β = 1.5):

Figure: True and Approximated Distribution
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The True Performance & The Bound

True performance:
∫ 1
0 e−λ 1

B(1.5,1.5)

√
λ(1− λ)dλ ≈ 0.626.

Bound on relative entropy: 0.05 (True relative entropy ≈ 0.484).

Figure: Performance Bound for ODE Model
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Conclusions

In this talk, we:

Addressed the modelling of uncertainty in mathematical
models

Considered some concrete models in which we are interested
in uncertainty analysis

Showed empirically we can obtain performance measures on
these models under assumptions about the underlying
uncertainty
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Thank You!

Contact: lfd27@drexel.edu
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