
Introduction Background Theoretical Results Computational Results Future Directions

An Uncertainty Quantification Framework

Liam Doherty

Drexel University SIAM Chapter

April 20, 2022

Liam Doherty Drexel University SIAM Chapter

An Uncertainty Quantification Framework



Introduction Background Theoretical Results Computational Results Future Directions

Outline

1 Introduction

2 Background

3 Theoretical Results

4 Computational Results

5 Future Directions

Liam Doherty Drexel University SIAM Chapter

An Uncertainty Quantification Framework



Introduction Background Theoretical Results Computational Results Future Directions

The Goal

Introduce a framework that:

Allows for a mathematical separation of epistemic and
aleatoric uncertainties when assessing sensitivities of a system,

Produces bounds on performance measures of a system when
determination of the exact parameters of the system is not
possible, and

Is computationally tractable.
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An Example: Manufacturing

Specify Distributions/Tolerances

Design Process

Generate Performance Bounds

Bounds Acceptable?

Assessment Complete

No

Yes
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The Options for Uncertainty Modeling

Uncertainty

Aleatoric

Known Distribution (e.g., X ∼ N (0, 1))

Epistemic

Bounds Only (e.g., X ∈ [0, 1])

Mixed

Aleatoric Family (e.g., X ∼ N (µ, σ))
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Setup

Random variables take values in a Polish (complete,
separable) metric space X (often a closed subset of Rd).

The σ-algebra is the usual Borel σ-algebra.

The set of probability measures on X is denoted by P(X ).
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Risk-Sensitive Form

We first define the relative entropy (or Kullback-Leibler (KL)
divergence):

Definition 1

The relative entropy of ν ∈ P(X ) with respect to µ ∈ P(X ) is
given by

R(ν||µ) =

∫
X

log
(dν
dµ

(x)
)
ν(dx)

whenever ν � µ. Otherwise, R(ν||µ) = +∞.

This can be interpreted as the information lost when
approximating ν with µ.
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Risk-Sensitive Form

Now, we define our first risk-sensitive form:

Definition 2

Define for a bounded, continuous function F : X → R and any
c ∈ (0,∞)

Λc
.

=
1

c
log

∫
X
ecF (x)µ(dx). (1)

We also have the variational characterization (given without proof)

Λc = sup
ν∈P(X )

[
− 1

c
R(ν||µ) +

∫
X
F (x)ν(dx)

]
.

Liam Doherty Drexel University SIAM Chapter

An Uncertainty Quantification Framework



Introduction Background Theoretical Results Computational Results Future Directions

Interpretation

F (x) is a performance measure (e.g., a variance or error
probability). If F is large, the integral in Λc will amplify that
(hence ”risk-sensitive”).

µ is our nominal model (”best guess”) at the true distribution
ν.

Then the variational characterization gives∫
X
F (x)ν(dx) ≤ Λc +

1

c
R(ν||µ), ∀ν ∈ P(X ).

In plain English, this says that the expected performance has an
upper bound depending on µ and the ”distance” between ν and µ.
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Multiple Types of Uncertainties

X - space for random variables with known distribution

Y - space for random variables with unknown distribution

The generic performance measure is assumed to be of the form∫
X

∫
Y
F (x , y)λ(dy)ν(dx),

so that, i.e., the known and unknown variables are independent.
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Multiple Types of Uncertainties

Letting µ and γ be the nominal distributions of X and Y , we get
using the nominal measure µ×γ and true measure ν×λ the bound∫

X

∫
Y
F (x , y)λ(dy)ν(dx) ≤ 1

c
R(λ||γ) +

1

c
R(ν||µ) + Λc ,

where

Λc =
1

c
log

∫
X

∫
Y
ecF (x ,y)γ(dy)µ(dx). (2)

Since X has known distributions, we can set ν = µ.
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Hybrid Forms

The above performance measure does not distinguish by type of
uncertainty, motivating the definition of hybrid forms.

Definition 3

Define

Λ1
c
.

=
1

c
log

∫
Y
e
∫
X cF (x ,y)µ(dx)γ(dy). (3)

Notice by Jensen’s inequality, Λ1
c ≤ Λc in general. The following

bound applies (using an appropriate variational characterization):∫
Y

∫
X
F (x , y)µ(dx)θ(dy) ≤ 1

c
R(θ(dy)||γ(dy)) + Λ1

c .
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Interpretation

Consider the performance measure on epistemic variations

G (y) =

∫
X
F (x , y)µ(dx)

(i.e., replacing F in the original Λc definition). Then, we are
essentially exploiting the accessibility of µ in this modified
performance measure to obtain sharper performance bounds, and
the epistemic variation (i.e., random variables in Y) is the primary
influence on the bound.
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Hybrid Forms

The other hybrid form we consider is useful when epistemic
variables are dependent on the values taken by the aleatoric
variables.

Definition 4

Define

Λ2
c
.

=
1

c

∫
X

[
log

∫
Y
ecF (x ,y)γ(dy)

]
µ(dx). (4)

Again by Jensen’s inequality, we obtain Λ2
c ≤ Λc . Furthermore, we

get under independence that∫
X

∫
Y
F (x , y)θ(dy)µ(dx) ≤ 1

c
R(θ(dy)||γ(dy)) + Λ2

c .
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Hybrid Forms

We can also modify Λ1
c and Λ2

c to account for dependence of X on
Y or vice versa:

Λ̄1
c =

1

c
log

∫
Y
e
∫
X cF (x ,y)µ(dx |y)γ(dy)

where µ(dx |y) is the conditonal distribution on X given Y = y
(i.e., a stochastic kernel), or

Λ̄2
c =

1

c

∫
X

[
log

∫
Y
ecF (x ,y)γ(dy |x)

]
µ(dx).
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Relationship Between Forms

In general, we have∫
X

∫
Y
F (x , y)θ(dy)µ(dx) ≤ Λ1

c ≤ Λ2
c ≤ Λc .

There is some technical detail to prove that Λ1
c ≤ Λ2

c in general,
but the main takeaway is:
For the sharpest performance measures in situations where the
epistemic variations are independent of the aleatoric variations, Λ1

c

is the best bound.
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A Bird’s Eye View

The following three results say, essentially, that

We can obtain bounds for performance over a family of
distributions within a prescribed ball of the truth;

The bounds we obtain are, in some sense, sharp;

If all we know about the epistemic variables are bounds, then
Λ1
∞ = limc→∞ Λ1

c is the tightest possible bound.
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Bounding Performance

Theorem 5

Consider the functionals (2) - (4) and let D = {c : Λc <∞}
(resp., D i = {c : Λi

c <∞}, i = 1, 2). Assume that the interior of
D (resp., D i ) is nonempty. Then Λc (resp., Λi

c) is differentiable on
the interior of D (resp., D i ). Assume that F (x) ≥ 0. Then c 7→ Λc

(resp., c 7→ Λi
c) is nondecreasing for c ≥ 0. Let B > 0 be given.

Then there is a unique c ∈ (0,∞] at which

c 7→ 1

c
B + Λc

(
resp., c 7→ 1

c
B + Λi

c

)
attains a local minimum, where the statement that the minimum
occurs at c =∞ means that Λc + B/c > Λ∞ for a well-defined
limit Λ∞ and all c <∞.
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Interpretation

All of this can be wrapped up into a nice package:
Within a given tolerance of the truth, there is a unique,
optimal bound on the expected performance.

We get to choose our relative entropy radius B. This allows us to
reflect in our computation the degree of certainty we are about
”closeness” in our model. In essence, with little data we can still
produce bounds by relaxing our radius. As B ↘ 0 (i.e., in the
”data rich” regime), we are optimizing Λc , which is nondecreasing.
The optimum is then simply the performance under the nominal
model!
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Sharpness of the Bound

Theorem 6

Consider the functional (1) and assume the conditions of Theorem
5. Suppose that L ∈ R and B ∈ [0,∞) are given, and that c∗

minimizes

c 7→ 1

c
B + Λc

so that 1
c∗B + Λc∗ <∞. Define FB

.
= {γ ∈ P(X ) : R(γ||µ) ≤ B},

the family of alternative distributions on X . Then for all ν ∈ FB ,∫
X
F (x)ν(dx) ≤ L ⇐⇒ 1

c∗
B + Λc∗ ≤ L.
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Interpretation

Here, L plays the role of a criterion for sufficiency in the underlying
process (e.g., if the expected performance is worse than L, we
must re-engineer our manufacturing pipeline to meet the
regulation). This theorem says that
The true expected performance will satisfy the criterion if and only
if the upper bound for the entire family of alternative measures
does as well.
In essence, if the upper bound fails the criteria, we are, in some
sense, ”close” to failing the criteria and either need to improve our
process or relax our tolerances.
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The Best Bound for Least Information

Theorem 7

Let X and Y be subsets of a finite dimensional Euclidean space.
Suppose that A ⊂ Y is bounded and the closure of its interior and
that γ is the uniform measure on A. Assume that F is lower
semicontinuous in y for each x ∈ X and bounded from below.
Consider the risk-sensitive functional Λ1

c and let Λ1
∞ = limc→∞ Λ1

c .
Then

sup
y∈A

∫
X
F (x , y)µ(dx) = Λ1

∞.
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Interpretation

The set A being bounded is essentially saying that all we know
about the epistemic variables (i.e., those in Y) are bounds,
and the uniform distribution is to say that we are not
imposing any further structure on the uncertainties.

This theorem could be extended to unbounded A as long as
the accompanying distribution γ is appropriate (e.g.,
A = [0,∞) with γ exponential).
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Toy Problem Setup

Consider the dynamical system

d

dt
u(t) = −z1u(t), u(0) = z2,

where Z1 ∼ U[0, 1] and Z2 ∼ U[0, 1]. Our goal is to obtain bounds
on the second moment of the solution at time t = 1; i.e.,

F (Z1,Z2) = (u(1; z1, z2))2.
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Results

Approximations are using gPC representations of F with basis
degree 7. ”True” solutions are generated with direct numerical
quadrature.

Figure: Approximated Λc
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Results

Based on a true distribution θ(dz2) ∼ beta(α = 1.5, β = 1.5). This
implies B = R(θ||U[0, 1]) ≈ 0.0484. Under this true distribution
for z2, with Z1 ∼ U[0, 1] the truth, the actual performance
measure is approximately 0.13541.

Figure: Approximate Bounds on Performance
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Interpretations

Indeed, we get the desired bound Λ1
c ≤ Λ2

c ≤ Λc .

It is clear from the second plot that there is a minimizer of
1
cB + Λi

c for each i , consistent with the statement of Theorem
5.

We can combine this bound of our second moment with an
estimate of the mean solution at time t = 1 to obtain a
bound on the variance of the solution.
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Future Directions for Research

A small modification on the variational characterization of (1)
gives a bound of the form

EQ [f ]− EP [f ] ≤ 1

c
logEP

[
ec(f−EP [f ])

]
+

1

c
R(Q||P)

.
= Ξ+(c)

A similar form for a lower bound Ξ− holds.
Question: How can we obtain tight bounds over the performance
using an approximating distribution for a particular QoI?
Essentially, how can we practically estimate and optimize Ξ+?

Weighted Ensemble (WE) for variance reduction

Qualitative properties of Ξ+: Can we reduce search space?

Liam Doherty Drexel University SIAM Chapter

An Uncertainty Quantification Framework



Introduction Background Theoretical Results Computational Results Future Directions

Thank you!
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